
Neural Networks in Pytorch
Recitation 11/16 & 11/17

Creating a dataset
- Pytorch supports a lot of popular datasets
- Transforms can be applied to the data

Dataloaders
- Customized iterator over the dataset
- Can change lots of parameters
- More convenient for training than looping through dataset manually

Our data
- MNIST consists of visual representations of numbers from 0-9
- Goal is to identify number from image

MLP Architecture
- Flatten is very important for feeding

images through linear layers
- Linear layers require 2d input with

shape (batch_size, x)
- Final layer output is of size 10,

represents possible classes
- Softmax converts values to

probabilities
- forward() is executed whenever

model is called

CNN
- Considers positional information
- Considered better for images than linear layers
- Weighted average calculated on sections of images

CNN

CNN Architecture

Defining Model Architecture

CE Loss:

- Good for multiclass classification
- Attempts to maximize probability for true class, minimize for others

- E.g. Classes = {1,2,3}, true label = 2
- Tries to push model outputs towards [0,1,0]

Training Loop

Clears memory from
previous minibatch

Calculates model
outputs

How many loops over
the dataset

Iterate through
dataloader

Calculate loss over
minibatch

Calculate backpropagation
of loss

Update parameters

Seperate data

Testing loop
Do not

accumulate
gradients Calculate class

with highest
probability

